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Fluorescence quenching-based strategies have recently becomé€hart 1. Structures of Fluorophore Nucleoside Monomers in
broadly useful in nucleic acid-based biotechnologies. Quencher- Sequences 1—144

fluorophore pairs are widely employed in DNA sequence reporting, NH,

and are found in multiple formats such as PNA beacovesied e & (SN "~ O
D RO Oy v )

classes of molecular beacohgjuenched autoligation probés, b N o Q.O o Q

“Scorpion”# and “Pacmar? probes. Removal of a quencher from s )} s Q

a fluorescent label results in an increase in emission, thus yielding o-¢=o ‘0—i=o “o-p=0

a clear and simple signal for the presence of a genetic sequence. ~ A Ea E R Y

However, the sensitivity of such methods depends heavily on the 2 Specific sequences are detailed in Table 1.
efficiency of quenching, and as a result there has been a substantiaIT ble 1 Optical Data for Oli ic Fi h 114
amount of research recently on design of new quenchers for existingv\f’atgra' phical Data for Lligomeric Fuoropnores n

labels® and on careful matching of specific quenchers with known

fluorophores. Even with this optimization, the degree of quenching 305, Anac €M Ao Ksv
. . . L. . . . compd  sequence (nm) (nm) D M) comment
using discrete labels is often limiting in nucleic acid sequence
reporting. Importantly, recent studies of conjugated luminescent 1y 342,326 376,396 028 1910
. . - - . 2 Y 345,329 485 0.27 1310
polymers have shown exceptionally high quenching efficienciesdue 3 gy.s 345 329 492 021 2210F
to the mobility of the exciton in a given polymer chdiithis has 4 SY,S 346,330 490 0.15 5910
led to their recent application in aggregate-based DNA assays. 5 SYsS 348,332 490 0.16 4.%1C¢
However, such strategies have not found application in labeled 6 SBY 404,346 415,495 - 12'15X ig; mo’_‘olme'dr
. . . . A x excipiex
_nuclelc aC|d_ probes, possibly because of the large size. and 7 SBYE 452,346 451,475 - 21x 106 monomet-
inhomogeneity of such polymers and because it would be difficult 8.3x 10F exciplex
to conjugate them to synthetic DNA probes. 8 AYA 348 332 380,399 043 24 1C

Here we describe the finding of highly efficient quenching in a 9 A(YA), 348332 380486 0.23 8.5¢10°

; ; ; ; ; 10 A(YA); 348332 380487 021 3.% 10
different class of oligomeric reporters in which the fluorophores 11 A(YA)s 348332 381487 020 6.1 10°

are e_lssembled on a DNA backbpne. The molecule_s _are weII-(_jefined, 12 Y, 348333 481 N 12x 10 aggregate
relatively small, water-soluble oligomers and are trivial to conjugate 13 v, 350,333 465485 - 2.0x 18 aggregate
to DNA. We find that they can display quenching efficiencies that 14  Ys 350,334 466 - 8.9x 18 aggregate

are unprecedented for discrete organic molecules and rival values
previously seen only for conjugated polymeric systems.

We have recently studied these DNA-like fluorophores (oligode-
oxyfluorosides (ODFs)) as a new class of reporters and sensors
(Chart 1)1 They display highly diverse and tunable properties
depending on length, composition, and sequence. To begin to
explore the quenching properties of such fluorophores, we con-
structed a simple oligomer series containing pyrene nucleoside
monomers (see structures) to explore the effect of chain length on
the optical properties. It is known that pyrene molecules can interact, 250 300 3 (nm) 350

depending on their orientation and proximity, exhibiting spectral Figure 1. Absorption (left) and emission (right) spectra b5, The

changes both .in the ground state and in Fhe excited §tate._ significant spectral broadening in the absorption spectra as well as a broad,
On the basis of the structure of DNA itself, the deoxyribose- red-shifted emission &—5 relative to1 is indicative of both ground-state

phosphate backbone of ODFs is expected to bring appended pyrenegnd excited_-s;ate electronic interactions in the sequences containing multiple
into close contact. We found that the absorption spectra of the PYrene moieties.

oligomers2—5 (Figure 1, Table 1) showed clear spectral broadening (excimers) of pyrene (Figure 1). This interaction is uniform across
and a shift to lower energies when compared to the mondmer the series with a ratio of excimer emission to monomer emission
Thus, neighboring pyrenes #+-5 are not only in close proximity of 30:1 or greater (Figure 1). Quantum yields for the molecules in
because of restrictions of the DNA backbone, but evidence suggestshe series ranged from 0.28 farto 0.15 for4.

that they interact electronically in the ground state. Similarly, we ~ We exposedl.—5 in aqueous buffer to methyl viologen (MV),
found that the pyrene oligomers interact in the excited-state as which has previously been employed as a quencher of fluorescent
well: the emission spectrum dfshows the expected well-defined  conjugated polymers, DNA labels and pyrene derivatié3“MV
vibronic structure with peaks at 376 and 396 nm, while the emission was found to quench the emission df5 with Stern—Volmer
spectra of oligomerg—5 exhibit a broad, featureless peak centered constantsKsy) ranging from 1.9x 10° to 4.7 x 1(P. In the case

at 490 nm that can be ascribed to emission of excited-state dimersof the monomeric pyrend, Ksy = 1.9 x 10%, which is comparable

a All oligomers were prepared as Bhosphates; S THF spacer.
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Figure 2. Fluorescence emission quenching4ofleft) and 6 (right) by
methyl viologen at varying concentrations in water. Insets show Stern
Volmer plots. In the case @&, greater sensitivity toward quenching is seen
for the exciplex emission at 500 nm than for the 415 nm band.

to other small molecule fluorophor&uencher interaction's.
However, the octameb) was quenched far more efficiently, with

a value Ksy = 4.7 x 10°) comparable to those for conjugated
polymers of much greater length. Thus its quenching is exceptional
for a well-defined, relatively small molecufé:?

exciplex bands over monomer emission and with the long excited
states of these delocalized emissions. Second, it is likely that the
MV quencher, which is dicationic, has substantial noncovalent
binding affinity for these polyanionic molecules; such association
may increase the likelihood of quenching as well. Preliminary data
at varied ionic strength are supportive of an electrostatic component
to the quencher association (see Supporting Information).

In conclusion, we have found that oligomeric DNA-scaffolded
fluorophores are highly efficiently quenched by methyl viologen
and other known quenchers. We find that quenching efficiency
increases with increasing oligomer length and that the efficient
quenching can occur with oligomers of varied hydrocarbon fluo-
rophores (pyrene, benzopyrene, or perylene) that display excimer/
exciplex excited-state emissions. This suggests that such oligomeric
fluorophores may have special utility as reporters and sensors with
enhanced sensitivity, both in nucleic acid systems and possibly
beyond.
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perylene in addition to pyrene6,f) demonstrated fluorescent

excited-state complexes (exciplexes) that were also highly sensitive  SuPPorting Information Available: = Characterization data and
to quenching by MV (Table 1). Significantly, in cases where both Stern—Volmer plots for compound&—14. This material is available

monomer and exciplex emission was present, the delocalize
exciplex emission was much more efficiently quenched. For
example, in the case @& the long wavelength emission resulting

from the interaction of benzopyrene and pyrene was quenched

4-fold more efficiently than the emission of benzopyrene alone
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